Definite Integrals

Definite Integrals

Properties: 

1. 

Example:

25x2dx=52x2dx\int_2^5 x^2\,dx = -\int_5^2 x^2\,dx
LHS:=[x33]25=12583=1173=39= \left[ \frac{x^3}{3} \right]_2^5 = \frac{125 - 8}{3} = \frac{117}{3} = 39

RHS:

=[x33]52=39= -\left[ \frac{x^3}{3} \right]_5^2 = -39
Example:    Evaluate
33xdx


\int_{-3}^{3} |x|\,dx

Split at x=0x = 0:

=30(x)dx+03xdx= \int_{-3}^0 (-x)\,dx + \int_0^3 x\,dx
=[x22]30+[x22]03=(092)+(920)=92+92=9= \left[ -\frac{x^2}{2} \right]_{-3}^0 + \left[ \frac{x^2}{2} \right]_0^3 = \left( 0 - \frac{9}{2} \right) + \left( \frac{9}{2} - 0 \right) = -\frac{9}{2} + \frac{9}{2} = 93            
Evaluate23x24dx\int_{-2}^{3} |x^2 - 4|\,dx

We solve x24=0x=±2x^2 - 4 = 0 \Rightarrow x = \pm2

Break the integral into intervals where the expression inside modulus changes sign:


23x24dx=22(x24)dx+23(x24)dx\int_{-2}^{3} |x^2 - 4|\,dx = \int_{-2}^{2} -(x^2 - 4)\,dx + \int_{2}^{3} (x^2 - 4)\,dx

First part:

=22(4x2)dx=[4xx33]22=(883)(8+83)=16163=323= \int_{-2}^{2} (4 - x^2)\,dx = \left[ 4x - \frac{x^3}{3} \right]_{-2}^{2} = \left(8 - \frac{8}{3}\right) - (-8 + \frac{8}{3}) = 16 - \frac{16}{3} = \frac{32}{3}

Second part:

23(x24)dx=[x334x]23=(27312)(838)=(912)(838)=3(838)=3(8243)=3+163=73\int_2^3 (x^2 - 4)\,dx = \left[ \frac{x^3}{3} - 4x \right]_2^3 = \left( \frac{27}{3} - 12 \right) - \left( \frac{8}{3} - 8 \right) = (9 - 12) - \left( \frac{8}{3} - 8 \right) = -3 - \left( \frac{8}{3} - 8 \right) = -3 - \left( \frac{8 - 24}{3} \right) = -3 + \frac{16}{3} = \frac{7}{3}

Total:

323+73=393=13\frac{32}{3} + \frac{7}{3} = \boxed{\frac{39}{3} = 13}

Symmetry: Even Function

If f(x)=f(x) then:

aaf(x)dx=20af(x)dx\int_{-a}^a f(x)\,dx = 2\int_0^a f(x)\,dx

Example:

22x2dx=202x2dx\int_{-2}^2 x^2\,dx = 2\int_0^2 x^2\,dx

LHS:

[x33]22=8(8)3=163\left[ \frac{x^3}{3} \right]_{-2}^2 = \frac{8 - (-8)}{3} = \frac{16}{3}

RHS:

2[x33]02=283=1632 \cdot \left[ \frac{x^3}{3} \right]_0^2 = 2 \cdot \frac{8}{3} = \frac{16}{3}

Symmetry: Odd Function

If f(x)=f(x)            then:

aaf(x)dx=0\int_{-a}^a f(x)\,dx = 0

Example:

33x3dx=0\int_{-3}^{3} x^3\,dx = 06.   

Property:

abf(x)dx=abf(a+bx)dx\int_a^b f(x)\,dx = \int_a^b f(a + b - x)\,dx

sums based on above properties👈

Example:

01x1+x2dx=011x1+(1x)2dx                               

\int_0^1 \frac{x}{1 + x^2} \,dx = \int_0^1 \frac{1 - x}{1 + (1 - x)^2} \,dx
7.  
property






Example: 


Now use the property:

0af(x)dx+0af(ax)dx=0a[f(x)+f(ax)]dx\int_0^a f(x)\,dx + \int_0^a f(a - x)\,dx = \int_0^a [f(x) + f(a - x)]\,dx

Let’s find:

f(x)+f(π2x)f(x) + f\left(\frac{\pi}{2} - x\right)

Let’s compute:

  • f(x)=sinxsinx+cosx​

  • f(π2x)=sin(π2x)sin(π2x)+cos(π2x)=cosxcosx+sinxf\left(\frac{\pi}{2} - x\right) = \frac{\sin(\frac{\pi}{2} - x)}{\sin(\frac{\pi}{2} - x) + \cos(\frac{\pi}{2} - x)} = \frac{\cos x}{\cos x + \sin x}

So:

f(x)+f(π2x)=sinxsinx+cosx+cosxsinx+cosx=sinx+cosxsinx+cosx=1f(x) + f\left(\frac{\pi}{2} - x\right) = \frac{\sin x}{\sin x + \cos x} + \frac{\cos x}{\sin x + \cos x} = \frac{\sin x + \cos x}{\sin x + \cos x} = 1

Thus:

f(x)+f(π2x)=1f(x) + f\left(\frac{\pi}{2} - x\right) = 1

Now:

2I=0π2[f(x)+f(π2x)]dx=0π21dx=π22I = \int_0^{\frac{\pi}{2}} \left[ f(x) + f\left(\frac{\pi}{2} - x \right) \right] dx = \int_0^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2}

So:

I=π4I = \frac{\pi}{4}

No comments:

Post a Comment

 Dear Students, Calculus is more than just a chapter in your textbook — it's a gateway to your future . Whether you’re planning a caree...